

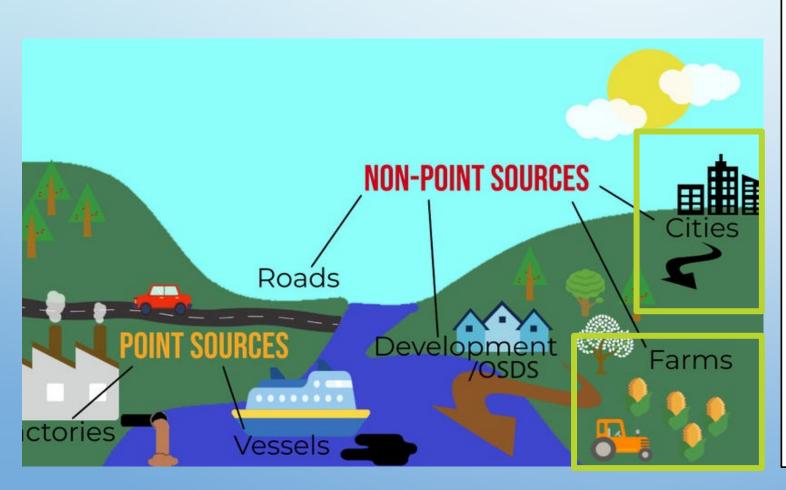
What if being outside looked like this?

THE HISTORY OF ENVIRONMENTAL ENGINEERING

EVEN THOUGH "ENVIRONMENTAL ENGINEER" MAY BE A FAIRLY NEW TERM, THE JOB HAS BEEN AROUND SINCE ANCIENT TIMES!

- ROMAN CLOCAE 6TH CENTURY STORMWATER AND WASTEWATER MANAGEMENT!
- ROMAN AQUEDUCTS: LARGER CITIES REQUIRED TRANSPORTATION OF HUGE VOLUMES OF WATER TO MEET THE NEEDS OF CITIZENS FOR WATER AND AGRICULTURE

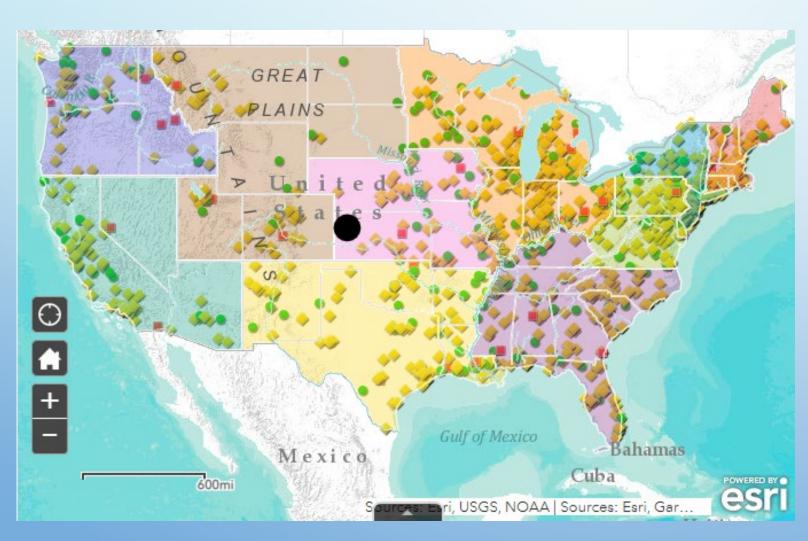
IMAGES: ROMAN CLOCAE AND AQUEDUCTS (ELEVATED AND UNDERGROUND)



ENVIRONMENTAL ENGINEERS HELP PROTECT PEOPLE FROM THE HARMFUL EFFECTS OF POLLUTION.

- A <u>POLLUTANT</u> IS ANY SUBSTANCE THAT ADVERSELY AFFECTS THE ECOSYSTEM OR HUMAN HEALTH.
- POLLUTANTS CAN BE FROM BOTH HUMAN
 SOURCES AND NATURAL SOURCES... CAN YOU
 NAME SOME?
- <u>EXAMPLES</u>: CARS, BUILDINGS, SEWER
 SYSTEMS, ETC. AND NATURAL SOURCES SUCH
 AS DUST STORMS, EROSION, VOLCANOES,

POINT VS. NON-POINT SOURCES


- POINT SOURCES: WHERE
 POLLUTANTS ARE RELEASED INTO
 THE SURROUNDING ENVIRONMENT
 FROM ONE SOURCE.
- NON-POINT SOURCE POLLUTION:
 WHERE POLLUTANTS ARE RELEASED
 BY MANY SMALL SOURCES THAT ARE
 SPREAD OUT.
- DO YOU THINK URBAN (CITIES) OR RURAL AREAS (FARMLAND)
 EXPERIENCE MORE POINT SOURCE SOLUTION?
 - WHY?

SUPERFU ND SITES

- LOVE CANAL IN NIAGARA FALLS, NY
- TOXIC WASTE LANDFILL FOR DECADES PEOPLE STARTED HAVING LONG TERM HEALTH EFFECTS, LIKE CANCER
- SUPERFUND SITE: A DESIGNATION RESERVED FOR THE WORST CASES OF ENVIRONMENTAL CONTAMINATION THAT REQUIRE LARGE-SCALE FEDERAL ATTENTION TO CLEAN-UP.

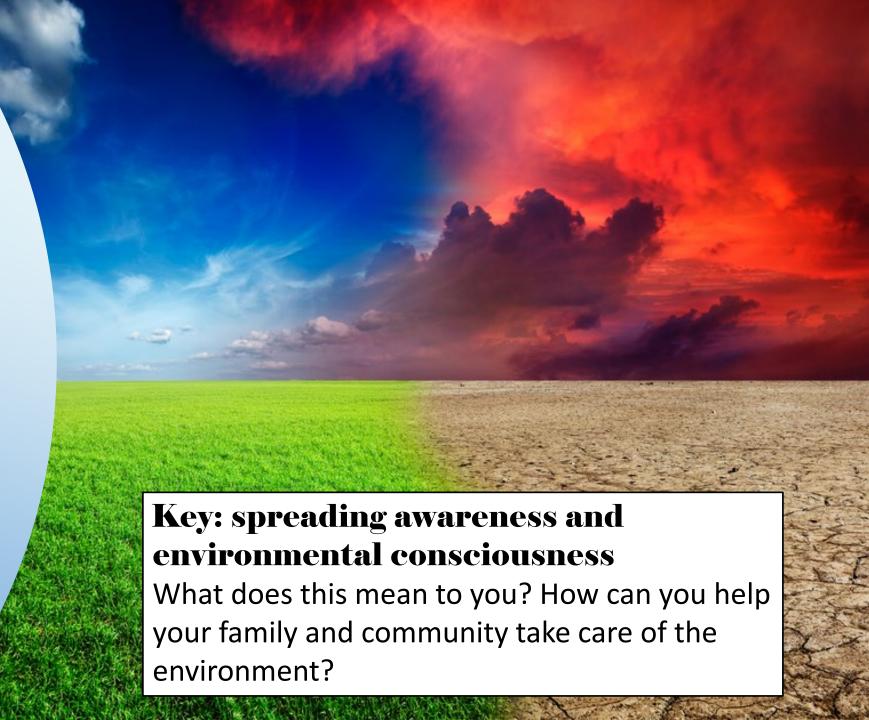
WHERE ARE SUPERFUND SITES?

- THEY ARE EVERYWHERE!
- YOU CAN LOOK UP WHERE YOU LIVE AND SEE WHAT SITES ARE AROUND YOU!
- SEARCH FOR SUPERFUND SITES WHERE YOU LIVE | US EPA

WHYDOES CANADA NOT HAVE ANY SUPER FUND SITES?

- THEY HAVE ENVIRONMENTAL SITES OF CONCERN TOO!
- THE EPA IS THE UNITED
 STATES ENVIRONMENTAL
 PROTECTION AGENCY, SO
 THEIR AREA OF CONCERN IS
 ONLY IN THE UNITED STATES!

WHEN PEOPLE CARE, THINGS CHANGE!


- IN RESPONSE TO MANY
 ENVIRONMENTAL DISASTERS, MANY
 PEOPLE BEGAN LOBBYING FOR CHANGE
 ON A GOVERNMENTAL LEVEL
- ENVIRONMENTAL REGULATIONS WERE SIGNED INTO LAW IN THE 1960'S, 70'S, AND 80'S:

OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION (OSHA)

CLEAN WATER ACT

CLEAN AIR ACT

RESOURCE CONSERVATION AND RECOVERY ACZ

NOTABLE IMPROVEMENTS THAT

ENVIRONMENTAL ENGINEERS HAVE HELPED BRING ABOUT?

- HUMAN HEALTH HAS IMPROVED
 MARKEDLY IN AREAS SUCH AS
 INFANT MORTALITY, DEATHS FROM
 WATER-BORNE ILLNESSES, AND
 LEAD CONCENTRATIONS IN OUR
 BLOOD!
- AIR POLLUTION IS DOWN 78% FROM THE 1970'S!

WHAT CURRENT CHALLENGES ARE ENVIRONMENTAL ENGINEERS WORKING ON?

CHALLENGES OCCUR ON BOTH THE NATIONAL AND GLOBAL SCALE:

- WATER SCARCITY AND CONFLICT
- INCREASED VARIABILITY IN CLIMATES
- CHANGING PH OF THE WORLD'S OCEANS.
- MANAGEMENT OF HIGH CONCENTRATIONS OF POLLUTANTS IN CITIES
- DEFORESTATION AND ENDANGERED SPECIES
- DRINKING AND WASTEWATER MANAGEMENT
- ALGAE BLOOMS
- MORE!!

What Tools Do We Use?

Physical Models Field Sampling Citizen-science **Industry Partnerships** Analytical Tools (GC-MS, HPLC, ESM, etc.) GIS Other software (EPAnet, OpenLCA, coding languages, tensorflow, etc.) Stopwatches, measuring tape, etc.

IS ENVIRONMENTAL ENGINEERING A GOOD PROFESSION?

- HELP IMPROVE THE ENVIRONMENT FOR THE PEOPLE, PLANTS, AND ANIMALS YOU LOVE!
- ENVIRONMENTAL ENGINEERS CLEARLY HAVE MANY AREAS IN WHICH THEY CAN CONTRIBUTE; IT IS A GROWING FIELD!
- ON TOP OF THAT, ENVIRONMENTAL ENGINEERING IS RANKED BY FORBES AS #5 OF THE "15 MOST VALUABLE COLLEGE MAJORS".

 ACCORDING TO FORBES, THE MEDIAN STARTING SALARY FOR ENVIRONMENTAL ENGINEERS IS \$51,700 AND THE MEDIAN MIDCAREER SALARY IS \$88,600.

INTRODUCTION TO WATER FILTRATION TRAIN THE TRAINERS

JULIA KENDALL AND MARY ASHLEY HAND

BY THE END OF THE LESSON STUDENTS WILL BE ABLE TO:

- UNDERSTAND WHY WATER FILTRATION IS IMPORTANT.
- LEARN ABOUT DIFFERENT TYPES OF CONTAMINANTS IN WATER.
- DISCUSS HOW NATURAL AND MAN-MADE FILTRATION SYSTEMS WORK.

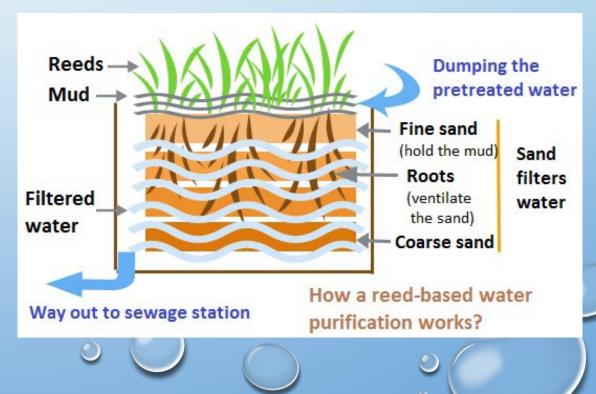
WHY IS IT IMPORTANT FOR US TO FILTER WATER? HOW DO WE GET CLEAN DRINKING WATER?

• HTTPS://WWW.YOUTUBE.COM/WATCH?V=H1AE2DIVSIW

HTTPS://WWW.YOUTUBE.COM/WATCH?V=PEKXB3N6G3I ← HOW WE GET CLEAN DRINKING
 WATER

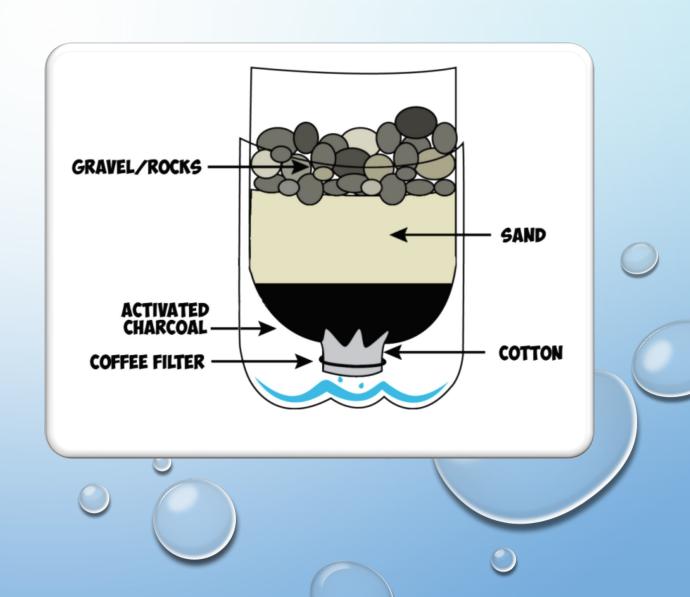
MAIN TYPES OF WATER CONTAMINANTS

- PHYSICAL IMPACT THE PHYSICAL APPEARANCE OF WATER.
 (EXAMPLES: DIRT, SAND, OTHER PARTICLES SUSPENDED IN WATER FROM SOIL EROSION)
- CHEMICAL- ELEMENTS OR COMPOUNDS. CAN BE NATURALLY OCCURRING OR MAN-MADE. (EXAMPLES: NITROGEN, PESTICIDES, METALS, BLEACH)
- BIOLOGICAL- ORGANISMS IN WATER. ALSO CALLED
 MICROBES. (EXAMPLES: PARASITES, BACTERIA, &VIRUSES)



FILTRATION IN NATURE

• IN NATURE WATER IS FILTERED THROUGH LAYERS OF SOILS, SAND, ROCK, AND OTHER ORGANIC MATERIALS LIKE LEAVES.



GROUP WORK

- WORK IN GROUPS TO TRY TO FILTER DIRTY WATER USING PAPER TOWELS AND TURBIDIMETER.
- NOTE WATER CLARITY BEFORE AND AFTER FILTRATION. WHAT WORKED AND WHAT DIDN'T? BRAINSTORM FILTRATION METHODS AND CONSIDER OTHER MATERIALS THAT WOULD BE HELPFUL IN FILTRATION.

DAY 2 ENGINEERING A WATER FILTER

REVIEW!

- WHAT ARE THE DIFFERENT TYPES OF CONTAMINANTS IN WATER?
- HOW DOES WATER FILTRATION HAPPEN IN NATURE?

PURPOSE OF PROVIDED MATERIALS

- COTTON BALLS: TRAP LARGE DEBRIS.
- RICE: HELPS REMOVE FINER SEDIMENTS.
- <u>SAND</u>: REMOVES SMALLER DIRT PARTICLES.
- ACTIVATED CARBON: ABSORBS CHEMICALS AND ODORS.
- COFFEE FILTERS: ACTS AS AN INITIAL COARSE FILTER.
- **ELECTRICAL TAPE**: HELPS SECURE FILTER LAYERS

GROUPWORK

- DRAW/DESIGN POTENTIAL FILTER DESIGNS.
- [MATERIALS: CUT WATER BOTTLE, COTTON BALLS, SAND, RICE, ACTIVATED CARBON, COFFEE FILTERS, AND ELECTRICAL TAPE]
- LABEL MATERIALS USED IN DESIGN.
- BE ABLE TO SUPPORT THE ORDER OF MATERIALS IN YOUR DESIGN.
- SET TIMER

WRAP UP!

• WHAT MATERIAL DID YOU THINK WAS THE MOST EFFECTIVE IN FILTERING DIRTY WATER? WHY?

DAY 3: BUILDING AND TESTING THE FILTERS

BY THE END OF LESSON STUDENTS WILL BE ABLE TO:

- CONSTRUCT WATER FILTERS AND TEST THEM.
- COMPARE RESULTS AND DISCUSS IMPROVEMENTS.

QUICK REVIEW!

- CONSIDER DESIGNS FROM YESTERDAY'S CLASS
 - WHAT DO YOU THINK WILL HAPPEN WHEN YOU RUN WATER THROUGH YOUR FILTER DESIGN?
 - HOW WILL CLARITY OF WATER CHANGE?

BUILD!

- GET INTO YOUR GROUPS AND BEGIN BUILDING YOUR FILTERS!
- <u>TIMER</u>

FILTER TESTING!

- SET <u>TIMER</u> FOR FILTER TESTING!
- MEASURE TURBIDITY BEFORE AND AFTER FILTRATION [WORKSHEET]
- HAVE STUDENTS TAKE NOTES OF WHAT WORKED WHAT DIDN'T FOR EACH GROUP.

WRAP- UP

- EVALUATE YOUR DESIGN WORKSHEET
- WHAT WORKED AND WHAT DIDN'T?
- BRAINSTORM ONE WAY YOU COULD HAVE IMPROVED YOUR DESIGN.

BY THE END OF THE CLASS STUDENTS SHOULD BE ABLE TO:

- ANALYZE FILTER EFFECTIVENESS.
- MODIFY DESIGNS FOR BETTER RESULTS.
- DISCUSS REAL-WORLD APPLICATIONS.

REVIEW & DISCUSS

- GET IN YOUR GROUPS AND SHARE RESULTS FROM YESTERDAY'S EXPERIMENT.
- WHAT WORKED BEST FROM EACH DESIGN? WHY DID IT WORK?
- COMPARE CLARITY WITH RESULTS FROM TURBIDIMETER.

DESIGN IMPROVEMENT

• MAKE MODIFICATIONS TO DESIGN BASED ON YESTERDAYS TESTING.

TIMER

FINAL TEST!

• RETEST IMPROVED DESIGN AND COMPARE RESULTS FROM YESTERDAY.

WRAP-UP

- WHAT DID YOU LEARN FROM THIS EXPERIMENT?
- HOW IS THIS IMPORTANT IN THE WORLD WE LIVE IN?
- CONSIDER HOW SCIENCE AND ENGINEERING WORK TOGETHER TO PROVIDE CLEAN WATER.